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Abstract— Reinforcement learning has shown great potential
to address long-horizon tasks. However, most existing work
lacks the ability to reason about functional parts of objects
and extract the task semantics to facilitate robotic learning,
making it difficult to achieve category-level generalization even
on seen objects. To address these issues, we develop a temporal
logic guided affordance learning framework for generalizable
dexterous manipulations (TALD). In particular, TALD is
equipped with affordance learning for predicting actionable
information and LTL representation for understanding the
task semantics and improving learning efficiency. We design
a contact predictor from the affordance learning perspective
to improve the generalization performance, which predicts
the max-affordance point observation based on the 3D point
clouds to guide the agent to manipulate the functional part
of objects. And we exploit the LTL progression to construct
a task-driven labeled POMDP to address the challenge
of a non-Markovian reward function, and design a task
module to extract the LTL representation by Transformer
Encoder to improve the sampling efficiency and facilitate
the robotic learning. We validate the proposed method in
four articulated manipulation scenarios. The generalization
performance corresponding to success rates and visualization
effects show the effectiveness of TALD. Our project is available
at: https://sites.google.com/view/tald-0257/.

I. INTRODUCTION

One of the ultimate goals of robotic learning is to let

the robot itself understand where the critical parts of an

object are and how they can be manipulated efficiently. In

order to achieve such human-level intelligence, the capability

of reasoning the functional areas of manipulated parts with

affordance and understanding the semantics of task semantics

is essential. With the development of learning algorithms,

reinforcement learning (RL) has shown its potential to

address long-horizon tasks, which models the dynamics

of interaction as a Markov decision process (MDP) and

concentrates on learning an optimal policy from the update

by exploiting the transitions sampled from MDP [1]. While

RL-based methods have enabled robots to perform tasks

ranging from simple to complex (e.g., MuZero [2] and

Go-Explore [3]), a significant and yet difficult topic is

how robots can determine the optimal operating point for

object manipulation and effectively extend this capability to

unseen objects. Specifically, there are three primary issues:

1) In contrast to most RL methods that rely on state

information fed back from the environment to allow the agent

to learn object manipulation, how can the robot effectively

generalize to manipulate different objects based on vision
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information? 2) When performing manipulating on an object

with different functional parts, how to improve the contact

position from the view of affordance learning? 3) Since there

are often similar task instructions when manipulating a class

of objects, how the robot can incorporate the task semantics

to further improve the performance of their generalization

capabilities?

The idea of affordance learning was originally proposed

in [4] mainly to suggest possible ways for agents to

interact with objects, which has been proven effective in

improving the performance of operations from different

perspectives. An affordance representation model based on

self-supervised learning is proposed in [5] to calculate the

distance between the robot and the manipulated object as

well as to determine the optimal interaction point for global

to local object grasping. The work [6] considers affordance

learning from an interaction perspective and proposes a

learning framework to estimate per-pixel affordance map for

achieving articulated tasks. The work [7] further extends [6]

by considering the ability of two agents manipulating in

concert to accomplish challenging tasks. The work of [8]

proposes an end-to-end manipulation learning framework by

exploiting RL and affordance learning, which collects contact

information to optimize the affordance model and drives

the agent to get better performance based on the predicted

interaction point. Although there have been advancements,

it remains challenging how traditional approaches that rely

on affordance learning can be effectively combined with

task semantics to direct the agent in manipulating tasks

that involve a series of sub-goals that must be logically

accomplished.

Due to the rich expressivity and capability, linear temporal

logic (LTL) is capable of describing a wide range of

complex tasks composed of logically organized sub-tasks

[9]–[11]. Learning algorithms are often utilized to tackle

complex tasks involving specialized logic by converting

the LTL specification into an automaton. For instance,

parameterized action reinforcement learning is exploited with

LTL representations to make the robot manipulate diverse

long-horizon tasks [12]. Learning-based safety manipulation

subject to the finite-state predicate automaton (FSPA) in the

presence of complex tasks is investigated in [13]. The method

of composing the LDGBA and the MDP to an embedded

product MDP (EP-MDP) is designed in [14] to solve the

difficulty of sparse rewards setting. However, the above

algorithms are usually dedicated to solving a specific single

task, and are hard to have good generalization performance

in similar task scenarios. In [15], a method, namely meta
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Q-learning of multi-task, is proposed to generalize the

learned model to a new set of tasks that decomposed by

LTL Progression. However, this framework is difficult to

extend to zero-shot generalization situations. An approach

extracting the semantics of LTL based on graph neural

networks is proposed in [16] to achieve task-oriented policies

and generalize to new instructions. However, it uses radar

information to allow the robot to make similar decisions

in unseen scenarios, whose sensors are difficult to extend

for manipulation tasks. The work [8] exploits 3D point

clouds to predict contact positions based on affordance maps

and generalizes over different kinds of manipulation tasks.

However, it ignores the enhancement of understanding task

semantics for robotic manipulations.

To bridge this gap, we consider encoding LTL instructions

via Transformer to guide the agent to understand the task

semantics to offer better affordance and further improve its

generalization ability in similar scenarios.

We summarize the main contributions of this work as

follows:

1) We proposed a novel framework for generalizable

dexterous manipulation over four articulated object

manipulations, namely TALD, which not only guides

the agent’s manipulation with the max-affordance point

observation, but also exploits the task semantics to improve

learning efficiency and generalization through category-level

evaluation.

2) We design a contact predictor from the affordance

learning perspective to improve the generalization

performance, which predicts the max-affordance point

observation based on the 3D point clouds to guide the agent

to manipulate the functional part of objects.

3) We exploit the LTL progression to construct a task-

driven labeled POMDP to address the challenge of a non-

Markovian reward function, and design a task module to

extract the LTL representation by Transformer Encoder to

improve the sampling efficiency and facilitate the robotic

learning.

4) We validate the proposed method in four articulated

manipulation scenarios. The generalization performance

corresponding to success rates and visualization effects show

the effectiveness of TALD.

II. PRELIMINARIES

A. Co-Safe Linear Temporal Logic

Co-safe LTL (sc-LTL) is a subclass of LTL that can be

satisfied by finite-horizon state trajectories [17]. Since sc-

LTL is well-suited for describing robotic tasks (e.g., approach

the bucket, grasp the handle, and then lift it up to the table),

this work will concentrate on sc-LTL. An sc-LTL formula

is constructed by using a collection of atomic propositions

Π that can be true or false, standard Boolean operators like

∧ (conjunction), ∨ (disjunction), and ¬ (negation), as well

as temporal operators like © (next), ♦ (eventually), and ∪
(until). The semantics of an sc-LTL formula are interpreted

over a word σ = σ0σ1...σn, which is a finite sequence with

σi ∈ 2Π, i = 0, . . . , n, where 2Π represents the power set of

Π. Denote by 〈σ, i〉 � ϕ if the sc-LTL formula ϕ holds

from position i of σ. [10] provides more comprehensive

explanations and illustrative examples.

B. Labeled POMDP and Visual Reinforcement Learning

When considering an sc-LTL instruction ϕ in visual RL,

a labeled POMDP Me can be constructed to model the

dynamics between the agent and the environment as Me =
(S, T,A, pe,Π, L,R, γ, μ,Ω, O), where S is the state space,

T ⊆ S shows a set of terminal states, A represents the

action space, pe(s
′|s, a) is the transition probability from

s ∈ S to s′ ∈ S under action a ∈ A, Π is a collection of

atomic propositions meaning the properties corresponding

to the states, L : S → 2Π denotes the labeling function,

R : S → R is the reward function, γ ∈ (0, 1] is the discount

factor, μ is the initial state distribution. The observation

space of an environment is denoted as Ω. The observation

function O : S → Ω translates an environment state s to its

corresponding observation in Ω. And a deterministic policy

πe is used to interact the environment over Me by outputting

the action a and get the reward by rt = R(st).
The reward function is usually considered to be

Markovian, meaning the reward at st+1 only depends on the

transition from st to st+1. However, when a robot attempts a

long-horizon task, it is usually only rewarded when the task

is completed, i.e., σ � ϕ. Since the word σ = σ0σ1...σt is

interpreted from the state trajectory s0s1...st by the labeling

function L, it produces a non-Markovian reward function

R(s0s1...st) =

⎧⎪⎨
⎪⎩

renv + rϕ, if σ |= ϕ

renv − rϕ, if σ |= ¬ϕ
0, otherwise

, (1)

where σt = L(st), renv is the environmental reward and rϕ
corresponds to the task rewards when the instruction ϕ is

satisfied with σ.

III. PROBLEM FORMULATION

In order to further explain the motivation of the proposed

method for learning dexterous skills with temporal logic and

affordance learning, we will illustrate an example that will

be considered throughout this work.

Example 1. Consider a dexterous manipulation [18] shown

in Fig. 1(a), in which the robot needs to approach the

toilet and open the lid Olid. The set of propositions Π is

{toilet_approahed, lid_grasped, lid_opened}. Using above

propositions in Π, an example sc-LTL formula is ϕtoilet =
♦(toilet_approahed∧♦(lid_grasped∧♦lid_opened)), which

requires the robot to sequentially approach, grasp, and

open the lid of the toilet. The possible functional part and

predicted manipulated point are highlighted in red and green,

respectively, as shown in Fig. 1(b).

In this work, we are interested in exploiting affordance

learning to achieve category-level generalization based on

the point cloud and absorbing task semantics encoded

by Transformer to further improve the performance. By

segmenting the 3D point cloud of the scene and extracting
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max-affordance
point observation

(a) (b)
Fig. 1: We illustrate an example that the robot implements some
dexterous manipulation (e.g., ϕtoilet) by manipulating the object in
the environment.

feature, we hope to take advantage of affordance learning

to score the functional part and provide the optimal contact

position. By encoding LTL instructions using Transformer,

we want to exploit its representation to understand the task

semantics and facilitate the training of the agent. Compared

with previous work only using 3D point cloud to guide

the agent, when using the affordance module to predict the

optimal operating point for the agent, not only can it be

used to effectively guide the agent to complete dexterous

operations, but also the feedback from its interaction with

the environment can update the task representation encoded

by Transformer to facilitate the training of the agent, leading

to a mutual enhancement.

The goal of the temporal logic guided affordance learning

framework is to find an appropriate policy πϕ over the

affordance leaning and LTL instructions, such that the

desired contact position and LTL representations can guide

the agent to achieve effective generalization on dexterous

manipulations. The problem of this work can be formally

described as follows.

Problem 1. Given a labeled POMDP Me =
(S, T,A, pe,Π, L,R, γ, μ,Ω, O) corresponding to task

ϕ, this work is aimed at finding an optimal policy π∗
ϕ over

LTL representation ϕθ, so that the successful rate evaluated

on seen and unseen sets of articulated objects under the

policy π∗
ϕ can be maximized.

IV. METHOD DESIGN

In this section, we propose a novel framework, namely

temporal logic guided affordance learning for generalizable

dexterous manipulation (TALD), that not only design a

contact predictor to guide the agent to manipulate with

the max-affordance point observation, but also exploits the

task semantics to improve learning efficiency and generalize

through category-level evaluation. Section IV-A presents

how the vision feature extracted from 3D point clouds can

be incorporated into reinforcement learning. Section IV-B

explains in detail how to exploit affordance learning to guide

the agent generalizing across diverse objects. Section IV-C

shows how the LTL representation helps the agent understand

the task semantics and improve the agent generalization
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Fig. 2: The framework of TALD that exploits the contact predictor
and LTL representation to improve the learning efficiency and
ensures generalization performance. a) Task Module: The outline of
encoding the LTL instructions ϕ to the LTL representation ϕθ by
Transformer Encoder. (b) The main method in TALD to implement
category-level generalization over a wide range of objects which
first extracts the vision feature from 3D point clouds, then predicts
the MPO by the contact predictor and interacts the environment
with the guidance of the MPO and LTL representation.

performance. The overall method behind TALD is illustrated

in Fig. 2, which first extracts the vision feature from 3D point

clouds, then predicts the max-affordance point observation

by the contact predictor and interacts the environment with

the guidance of the max-affordance point observation and

LTL representation.

A. Feature Extraction and Policy Learning

One of the major challenges in solving problem 1 is

the form of visual representation. When RL algorithms

are guided by visual information, the observation is

usually composed of the images from the camera or

the corresponding 3D point cloud. With the continuous

improvement of point cloud processing research in the vision

field, 3D point cloud RL algorithms not only have better

sampling efficiency in the single task [19], but also have

better reasoning ability in manipulation generalization [18]–

[21]. Therefore, this work mainly focuses on solving the

problem of generalization on dexterous manipulation from

the view of 3D point cloud.

When 3D point cloud is used to guide the RL algorithm

to achieve manipulation generalization, its performance

depends on the quality of the observed features extracted by

the vision module [18]. Since the point cloud segmentation

method based on the functional part of the object [22] can

help the agent to reason about the operable region of the

unseen object, and provide the necessary foundation for the

max-affordance point observation (MPO) [8], we constructed

the dataset for the pre-training segmentation following the

method provided by [18], which labeled the point cloud into

four groups: the functional part of the object, the rest of the

object, the robot hand, and the robot arm.

In order to attain generalization at the category level

over a range of objects, we use the pre-trained PointNet

[23] as an extractor to represent the vision features by

inputting 3D point clouds. Specifically, given the observation
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o, the PointNet PN(·) encode the observation o to a

vision representation opn. Then the policy πe takes the

representation opn as an input and outputs the corresponding

action a to interact with the environment. Let Qϕ (opn, a)

and Qϕ′
(
o
′
pn, a

′
)

be the Q-value function of task ϕ and ϕ
′
,

respectively. Thus in the conventional RL algorithm, such as

DQN, the update for Qϕ with the extracted feature can be

written as

Qϕ ← Qϕ + α
(
Rϕ + γmax

a′
Qϕ′

(
o
′
pn, a

′)−Qϕ

)
. (2)

By extracting visual features to guide the RL to manipulate

the object, the agent has a basic reasoning ability reflected in

the segmented functional part of the object. But its reasoning

ability can be further improved by the following affordance

module.

B. Affordance Learning Optimized by Contact

One of the keys to achieving manipulation generalization

is to allow the robot to understand by itself how to

manipulate key parts of the object so that it can complete

the task quickly and well, i.e. even for objects that it

has never seen before. Therefore, another major challenge

in solving Problem 1 is how to further determine the

optimal manipulation points on the segmented point cloud

information. To address this issue, [6] considers affordance

information from an interaction perspective and proposes a

learning-based framework to estimate per-pixel affordance

map for achieving articulated tasks. However, it needs

a lot of interactions to get effective samples to update

the actionability scoring module for the manipulation with

pushing and pulling primitives. So this work hopes to design

a contact predictor CP(·) which improves the quality of

the max-affordance point observation (MPO) generated by

itself with a high success rate of contact positions during

interaction as the RL controller evolves, thus reducing the

burden of pre-collection and achieving a similar performance

like [6].

The main idea of affordance learning in this work is

that the contact predictor selects the max-affordance point

observation (MPO) based on the corresponding affordance

score map from the object point cloud, and incorporates

the MPO as an additional observation oMP to the policy,

thus effectively updating the contact predictor based on the

contact position of the end-effector seff of the robot (e.g., the

palm of a dexterous hand) and the corresponding success rate

of the manipulation.

Specifically, given the object point cloud observation oobj ,

the contact predictor first extracts the features of each point

using PointNet++ [24] and then feeds them to the fully-

connected layer (MLP) to generate a map of affordance

scores for each point of the action for oobj . Then based on

the score of each point, the max-affordance point observation

oMP is obtained by averaging the positions of top K
scoring points where K is determined by the range of the

maximum score. In order to make the end-effector seff as

close as possible to the MPO oMP, we design the max-

Algorithm 1 Temporal Logic Guided Affordance Learning

1: procedure INPUT:(An LTL intruction ϕ and the POMDP Me corresponding to
some ϕ)

Output: An approximately optimal policy π∗
ϕ(at | ot, ϕ) for the TL-

POMDP Mϕ

Initialization: All neural network weights
2: Load the pretrained weights to the PointNet PN(·)
3: for iteration 1,2,...,N do {Exploration Phase}
4: for episode 1,2,...,M do
5: Initialize timer t ← 0 and episode o0, and augment the observation

o0 with ϕθ encoded by Transformer
6: while episode not terminated do
7: ϕ

′ ← prog(L(s), ϕ)

8: if ϕ
′ ∈ {True, False} or s ∈ T then

9: Break
10: end if
11: Extract the vision representation opn from 3D point cloud by the

PointNet PN(·)
12: Get the max-affordance point observation oMP from object point

cloud by the contact predictor CP(·)
13: Determine R̃ϕ by (5) and gather data from ϕ following πϕ

14: end while
15: end for
16: for training step 1,2,...,K do {Training Phase}
17: Update all neural network weights by (4) and (6)
18: end for
19: end for
20: end procedure

affordance point reward (MPR) rMPR = 1/ ‖oMP − seff‖,

which can be viewed as part of renv in (1). Thus the Q-

value function Qϕ (opn, a) is then conditioned on the MPO

as Qϕ (opn, oMP, a), and (2) can be augmented as

Qϕ ← Qϕ + α
(
Rϕ + γmax

a′
Qϕ′

(
o
′
pn, o

′
MP, a

′)−Qϕ

)
.

(3)

In order for the contact predictor to predict the optimal

oMP, we keep the the MPO oMP generated by the contact

predictor as close as possible to the contact point where the

end-effector seff has a high success rate. Let DGTi(seff)
indicate the position of interaction with the object i and the

contact predictor CP(·) is updated with DGTi as below:

CP∗ = argmin
CP

∑
i

sri

∥∥∥∥∥∥
∑

oMP∈oobj

CP(oMP | oobji )−DGTi(seff)

∥∥∥∥∥∥
2

(4)

where sri is the manipulation success rate on the object i,
oobji is the point cloud of i-th object and CP∗ is the optimal

contact predictor.

C. LTL Rrepresetation Encoded by Transformer

This section presents how LTL progression can be used

to construct a Markovian reward function and how the LTL

representation can be encoded from LTL instructions in order

to facilitate the robotic learning. In particular, we exploit the

LTL progression from [15] and [25] to focus the agent’s

attention on the current sub-tasks rather than keeping track

of the original formula all the time, which takes the LTL

instruction ϕ and the word σ = σ0σ1... from the interaction

with the environment as inputs and applies the operator

prog (·) at step i, ∀i = 0, 1, . . . , to output the progressed

formula following prog (σi, p) = True if p ∈ σi, where p ∈
Π and prog (σi, p) = False otherwise. The detailed definition
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and examples can be found in [15].

Thus an augmented POMDP corresponding to an LTL

instruction ϕ, namely the task-driven labeled POMDP (TL–

POMDP), is proposed by utilizing the LTL progression.

Definition 1. Given a labeled POMDP Me with an LTL

instruction ϕ, the TL–POMDP can be built by augmenting

Me to Mϕ �
(
S̃, T̃, p̃,Π, L, R̃ϕ, γ, μ,Ω, O

)
, where S̃ =

S × cl(ϕ), p̃((s
′
, ϕ

′
)|(s, ϕ), a) = pe(s

′|s, a) if ϕ
′

=
prog(L(s), ϕ) and p̃i((s

′
, ϕ

′
)|(s, ϕ), a) = 0 otherwise, and

R̃ϕ is the reward function corresponding to the instruction

ϕ to address the issue of non-Markovian by exploiting the

LTL progression which is

R̃ϕ(s, ϕ) =

⎧⎪⎨
⎪⎩

renv + rϕ, if prog(L(s), ϕ) = True

renv − rϕ, if prog(L(s), ϕ) = False.

renv, otherwise

(5)

The term cl(ϕ) refers to the progression closure of ϕ,

which is the smallest set containing ϕ that is closed under

progression.

Compared to converting LTL specifications to automata or

RM, our previous work [26] also shows the representation

encoded by Transformer [27], which provides flexibility in

encoding LTL instructions and facilitate the agent’ s training.

Given an input Xϕ = (x0, x1, ...) corresponding to the LTL

task ϕ where xt,t=0,1,..., denotes the operator or proposition

in sc-LTL, Xϕ will be embedded by the word embedding E
following XE = [x0E; x1E; ...; xNE] ∈ R

B×M×D where B
is the batch size, M is the length of input Xϕ and D is the

model dimension of Transformer, and then XE is combined

with the frequency-based positional embedding Epos to take

use of the sequence’s ordering. The outline of LTL Encoder

for TALD is shown in Fig. 2. By representing the LTL

instruction in TL-POMDP, we can effectively utilize it to

improve the agent’s learning efficiency and guide the agent

with the task semantics.

By representing the LTL instruction ϕ via ϕθ encoded

by Transformer, Qϕ (opn, oMP, a) can be revised as

Qϕθ
(opn, oMP, a) and (3) can be augmented as

Qϕθ
← Qϕθ

+α
(
R̃ϕ + γmax

a′
Qϕ

′
θ

(
o
′
pn, o

′
MP, a

′)−Qϕθ

)
.

(6)

In this way, the agent can incorporate the task semantics

by encoding the corresponding representation ϕθ and try to

manipulate the functional parts of objects guided by the max-

affordance point observation.

The pseudo-code is outlined in Alg. 1. Before the training,

TALD first load the pretrained weights to PointNet PN(·)
(line 2). In the exploration stage, TALD applies the operator

prog (·) to progress the LTL formula ϕ and encode the LTL

representation ϕθ(lines 5-10). Then TALD exploits the PN(·)
to extract the vision feature opnfrom 3D point cloud (line

11) and predict the max-affordance point observation oMP by

averaging the positions of top K scoring points (line 12). By

input above information into the policy πϕ, TALD interacts

with the action a from πϕ to get the reward R̃ϕ (line 13). In

the update stage, TALD updates all neural network weights

by (4) and (6) (lines 16-17).

V. CASE STUDIES

In this section, we compare the proposed TALD

framework against baselines in terms of learning efficiency

and generalization performance over four scenarios. In

particular, we consider the three aspects as follows. 1)
Performance: How well does our approach outperform

baselines in four dexterous manipulation scenarios? 2)
Affordance: What is the role of affordance learning

for TALD? 3) Representation: How well can the LTL

representation help the agent improve the generalization via

Transformer?

A. Baselines and Tasks Setting

Baselines. In order to demonstrate the effectiveness of

TALD, it is empirically compared against four baselines. The

first baseline is DexArt from [18] which proposes a general

framework for dexterous manipulation over articulated

objects and generalizes well on different kinds of objects

by exploiting RL. The second baseline is DexArtafford
which augments the DexArt by guiding the agent with

affordance learning. The third baseline is our TALD without

the considering max-affordance point observation MPO,

denoted by TALDMPO
w/o , which aims to explore the help of

MPO for TALD. The fourth baseline is our TALD without

considering the max-affordance point reward (MPR), denoted

by TALDMPR
w/o , which aims to study the importance of MPR

for the policy learning of TALD.

Tasks Setting. To effectively evaluate the performance of

above algorithms, four challenging generalizable dexterous

manipulations in [18] are selected and the corresponding LTL

instructions are listed in our project. To guarantee the fairness

of the comparison, we choose PPO [28] as the backbone of

RL like [18] over 3 seeds.

B. Main Simulation Results

1) Success Rate. Table. I shows the success rate (mean

± std) of different methods on four scenarios for both seen

and unseen objects. It can be observed that (1) algorithms

with the help of affordance module (DexArtafford and

TALD) can get a higher success rate than DexArt, especially

when generalizing to the unseen objects in the Faucet and

Toilet tasks, having 8%~25% improvement; (2) Based on

LTL representation encoded by Transformer, TALD can

outperform other methods and get more stable generalization

performance in most of the scenarios, since the task module

can extract the task semantics from the LTL instructions and

facilitate the robotic learning with the LTL representation

described in Sec. IV-C; and (3) TALD only perform poorly

than DexArt on the seen objects of the Laptop task and we

speculate that DexArt is overfitting on the laptop’s seen set,

leading to its mediocre performance on the unseen set.

2) Ablation Study. To show the importance of designs of

MPO and MPR on TALD, we evaluate the ablation studies
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Fig. 3: We illustrate the segmentation based on the 3D point clouds and the max-affordance point observation obtained by averaging the
positions of top K scoring points in the Toilet and Laptop tasks.

TABLE I: Success Rate of Different Methods on four scenarios for Both Seen and Unseen Objects.

Task Faucet Bucket Laptop Toilet

Split Seen Unseen Seen Unseen Seen Unseen Seen Unseen

DexArt 0.790 ± 0.020 0.580 ± 0.070 0.750 ± 0.040 0.760 ± 0.070 0.920 ± 0.020 0.600 ± 0.070 0.850 ± 0.010 0.550 ± 0.010

DexArtafford 0.760 ± 0.060 0.624 ± 0.182 0.509 ± 0.202 0.563 ± 0.207 0.542 ± 0.048 0.533 ± 0.000 0.898 ± 0.051 0.597 ± 0.063

TALD 0.803 ± 0.042 0.728 ± 0.023 0.751 ± 0.030 0.792 ± 0.033 0.660 ± 0.135 0.650 ± 0.098 0.933 ± 0.010 0.639 ± 0.026
TALDMPO

w/o 0.841 ± 0.014 0.664 ± 0.007 0.388 ± 0.282 0.342 ± 0.256 0.403 ± 0.144 0.378 ± 0.150 0.931 ± 0.010 0.627 ± 0.030

TALDMPR
w/o 0.805 ± 0.108 0.681 ± 0.166 0.176 ± 0.248 0.146 ± 0.207 0.630 ± 0.227 0.556 ± 0.228 0.926 ± 0.007 0.612 ± 0.023

Fig. 4: The reward performance shows the effect about the design of the max-affordance point observation and the max-affordance point
reward during the training stage.

TALDMPO
w/o and TALDMPR

w/o , and show the corresponding

results in Fig. 4 and Table. I. As shown in Fig. 4 and Table.

I, it can be observed that (1) MPO has a bigger effect on

the performance of TALD, which is obvious on the Bucket

and the unseen objects of Faucet scenarios; (2) even without

the help of MPO, TALDMPO
w/o can show a higher success

rate on the seen objects of Faucet tasks, which is about 45%

higher than Dexart; (3) the design of MPR, on the other hand,

does not contribute much to the generalization performance

of TALD, but it is important for the Buckets scenario; (4) by

evaluating the success rates of TALDMPO
w/o and TALDMPR

w/o ,

showing the design of the max-affordance point observation

and the max-affordance point reward greatly improves the

generalization effect of the Bucket scenario; as well as (5)

TALDMPO
w/o and TALDMPR

w/o outperform DexArt on all sets of

Faucet and Toilet tasks, which further ensure the contribution

of affordance learning and task module to the performance

of the framework.

3) MPO Visualization. To show the help of the affordance

module in TALD, we illustrate the segmentation based on the

3D point clouds and the max-affordance point observation

obtained by averaging the positions of top K scoring

points in Fig. 3, whose red part represents the segmentation

corresponding to the functional part and green points means

the MPO derived from the affordance map. Note that the

angle of the simulation view in Fig.3 is not necessarily the

angle at which the camera captured the point cloud. We show

it this way only to clearly show the corresponding simulation

scene.

C. Limitations

Simulation results present that, with the design of

contact predictor and LTL Encoder in TL-POMDP, TALD

can improve learning efficiency during the training and

generalization performance when evaluating on unseen

objects. While TALD has great potential for generalization

better on dexterous manipulations, there remain several

issues. The first issue is that the RL backbone of TALD is

PPO, whose distribution is usually unimodal. This means

that it may lack expressiveness in complex environments

and generalize poorly in challenging scenarios such as the

laptop task. More effective RL algorithms with a multimodal

distribution policy are helpful in solving the above problem.

Another potential issue is that the LTL Encoder used for
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the task module is inspired from the original Transformer

[27]. With the development of the family of Transformer,

more effective designs of architecture will further improve

the method’s performance.

VI. CONCLUSIONS

In this work, we propose a novel method, TALD, to enable

efficient manipulation of articulated objects and greatly

improve the category-level generalization performance of

dexterous manipulations. In particular, LTL Progression

is used to construct TL-POMDP to avoid non-Markovian

reward functions. And TALD is equipped with affordance

learning for predicting actionable information and LTL

representation for understanding the task semantics and

improving the learning efficiency. We validate the proposed

method in four articulated manipulation scenarios. The

generalization performance corresponding to success rates

and visualization effects show the effectiveness of TALD.

Future work will consider optimizing robotic performance

to behave more like humans and deploying it in real-world

experiments.
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